Closed_orbits.gif (592 × 483 piksel, fayl hajmi: 6,52 MB, MIME tipi: image/gif, looped, 300 frames, 30 soniya)

Ushbu fayl Vikiomborga yuklangan boʻlib, boshqa loyihalarda ham qoʻllanilishi mumkin. Uning tavsif sahifasidan olingan maʼlumot quyida keltirilgan.

Qisqa izoh

Taʼrif
English: Central forces that decay as 1/r² are special, as they guarantee that all bound orbits are going to be closed (Bertrand's theorem). Small changes in the power will lead to significantly different kind of orbits.
Sanasi
Manba https://twitter.com/j_bertolotti/status/1247542284616269826
Muallif Jacopo Bertolotti
Ruxsat
(Bu faylning takror foydalanilishi)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

ep = {0, 0};
me = 5;
mp = {{0, 5}, {0, 5}, {0, 5}};
acc = {me (ep - mp[[1]])/(Norm[ep - mp[[1]]]^1 Norm[ep - mp[[1]]]^2), me (ep - mp[[2]])/(Norm[ep - mp[[2]]]^1 Norm[ep - mp[[2]]]^1.9), me (ep - mp[[3]])/(Norm[ep - mp[[3]]]^1 Norm[ep - mp[[3]]]^2.1)};
mv = mv = {{Sqrt[Abs[Norm[acc[[1]] ] Norm[mp[[1]] - ep] ]], 0.2}, {Sqrt[Abs[Norm[acc[[1]] ] Norm[mp[[1]] - ep] ]], 0.2}, {Sqrt[Abs[Norm[acc[[1]] ] Norm[mp[[1]] - ep] ]], 0.2}};
dt = 0.2;
mpold = mp;
mp = mpold + mv dt + acc/2 dt^2;
evo = Reap[Do[
      acc = {me (ep - mp[[1]])/(Norm[ep - mp[[1]]]^1 Norm[ep - mp[[1]]]^2), 
        me (ep - mp[[2]])/(Norm[ep - mp[[2]]]^1 Norm[ep - mp[[2]]]^1.9), 
        me (ep - mp[[3]])/(Norm[ep - mp[[3]]]^1 Norm[ep - mp[[3]]]^2.1)};
      mpoldold = mpold;
      mpold = mp;
      mp = 2 mpold - mpoldold + acc dt^2;
      Sow[mp];
      , {1500}];][[2, 1]];
plots = Table[
   Legended[
    Graphics[{Gray, Disk[ep, 0.1 ],
      Purple, Disk[evo[[j, 2]], 0.5 ], Line[evo[[1 ;; j, 2]] ]
      ,
      Orange, Disk[evo[[j, 3]], 0.5 ], Line[evo[[1 ;; j, 3]] ]
      ,
      Black, Disk[evo[[j, 1]], 0.5 ], Line[evo[[1 ;; j, 1]] ]
      },
     PlotRange -> {{-10, 10}, {-10, 10}}, Frame -> False], LineLegend[{Black, Purple, Orange}, {"F\[Proportional]\!\(\*FractionBox[\(1\), \SuperscriptBox[\(r\), \(2\)]]\)", "F\[Proportional]\!\(\*FractionBox[\(1\), SuperscriptBox[\(r\), \(1.9\)]]\)", "F\[Proportional]\!\(\*FractionBox[\(1\), SuperscriptBox[\(r\), \(2.1\)]]\)"}] ]
   , {j, 1, Dimensions[evo][[1]]}];
ListAnimate[plots[[1 ;; -1 ;; 5]] ]

Litsenziyalash

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents
Central forces proportional to 1/r² and r are the only ones that guarantee that all bound orbits are closed.

Items portrayed in this file

tasvirlangan obyekt

7 aprel 2020

image/gif

checksum inglizcha

479e909b7cbc3b46fa9f179445e1993e5aea35e2

data size inglizcha

6 835 038 Bayt

30,000000000000156 soniya

width inglizcha

592 piksel

Fayl tarixi

Faylning biror paytdagi holatini koʻrish uchun tegishli sana/vaqtga bosingiz.

Sana/VaqtMiniaturaOʻlchamlariFoydalanuvchiIzoh
joriy12:37, 2020-yil 8-aprel12:37, 2020-yil 8-aprel dagi versiya uchun tasvir592 × 483 (6,52 MB)BertoUploaded own work with UploadWizard

Bu faylga quyidagi sahifa bogʻlangan:

Faylning global foydalanilishi

Ushbu fayl quyidagi vikilarda ishlatilyapti:

Metama’lumot